

The 2023 ICPC Central Europe Regional Contest

ICPC CERC 2023

Solution Presentation

University of Ljubljana Faculty of Computer and Information Science

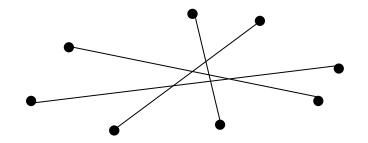
Ljubljana, 10. 12. 2023

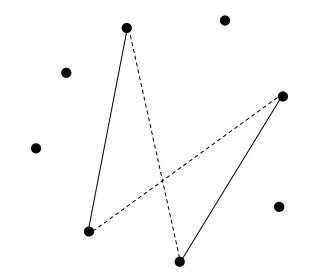
E - Equal Schedules (59/60)

Find differences between two schedules.

- 0 7 jan 7 14 tomaz 14 20 jure 20 24 jan 24 25 tomaz 25 26 jure
- 0 9 tomaz 9 20 jan 20 26 jure

jure -1 tomaz +1

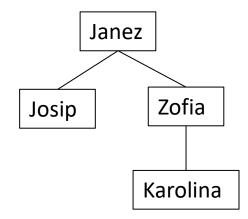

- at most 1000 items
- do what the task says ... in any way
 - map/dictionary



B - Ball Passing (46/48)

Pair students arranged in a convex polygon to maximize the sum of distances between paired students.

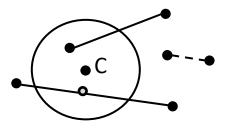
- solve boys and girls separately
- switching non-crossing pairs increases total distance
- unique configuration without non-crossing pairs
 - connect person X with person X+N/2

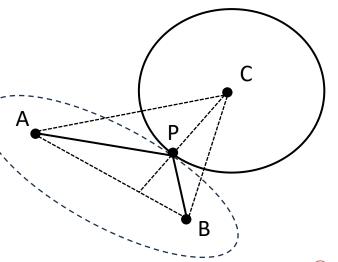


H - Human Resources (42/46)

Efficiently encode and decode a hierarchical structure.

Janez: Josip Zofia Zofia: Karolina Janez Josip Zofia Karolina (()(()))

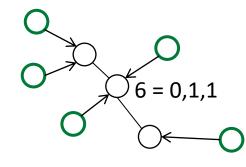

- structure:
 - parent of each node? ... n log(n) bits
 - parentheses encoding of a tree ... 2n bits
- content:
 - DFS order of employee names
 - preserves preference order of subordinates



G - Going to the Moon (19/35)

Shortest path from A to B while touching disk D = (C, r).

- A or B within D -> straight line
- segment AB crosses/touches D -> straight line
 - C' = projection of C onto line AB
 - C' on AB and dist(C', C) ≤ r
- ellipse with focal points A and B
- search between CA and CB
 - or along AB
 - ternary search, unimodal
 - property: normal at P (CP) bisects ∠APB
- alternatively:
 - sample uniformly around the circle
 - narrow down to the most promising section (and neighbors)



I - Interactive Reconstruction (15/17)

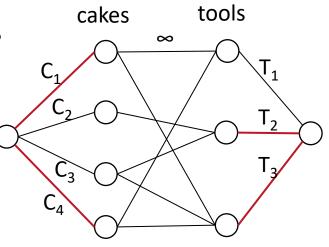
Reconstruct tree structure using sums of neighbors.

- find leaves, determine their parents, cut them off, repeat
- leaves: query 111...1
- parents: query with non-binary values 0 .. n-1?
 - make log(n) binary queries
- too many iterations?
 - adjust answers to previous queries!
 - O(n log n)
- $1 + \lceil \log_2 n \rceil$ queries

01234567

11111111

01010101


00110011

00001111

C – Cakes (11/17)

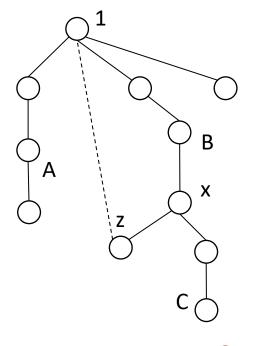
Decide which cakes to bake to maximize the profit = selling price – production costs (ingredients and tools).

- tools can be reused, subtract ingredients
- model with minimum cut
 - weight = loss of profit
 - cake edge = not selling that cake
 - tool edge = buying that tool
 - min cut = min loss with no source sink path
 - path = selling a cake without buying a required tool
- large weights ... Ford-Fulkerson is too slow
 - capacity scaling, Edmonds-Karp, Dinitz, ...

D - Drying Laundry (9/14)

Dry the sheets on two lines of equal length by hanging them over 1 or 2 lines (s=slow time, f=fast time).

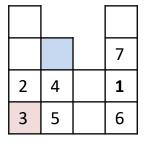
- binary search (drying time t)?
 - use a single line if possible ($s \le t$), otherwise hang over two
 - DP r(n, d) ... can you reach length d on line 1 with the first n single sheets

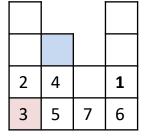

- sort sheets increasingly by their slow drying times
 - increasing t ... can afford to hang more sheets on the two individual lines
 - possible? fill one line to capacity ... max (d : $d \le L/2$ and r(n, d) = true)
 - answer_t = max(slow time = t, max of fast times for double sheets)
- r(n, *) = OR of two subarrays of r(n-1, *) ... bitsets!

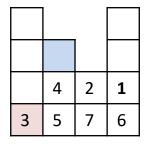
K – Keys (4/5)

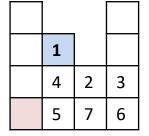
Arrange an exchange of keys between two residents.

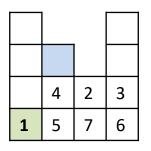
- node 1 (outdoors) not part of any cycle -> no solution
- find such cycle: DFS tree + back-edge (z,1)
- location of node 0 (bedroom)
 - A. in a different subtree
 - Alice: A -> 1 − z (drop A->1) − 1
 - Bob: 1 -> z (grab) -> 1 -> A
 - B. on the cycle
 - Alice: B -> 1
 - Bob: 1 z -> B
 - C. off the cycle
 - Alice: C -> x (drop C->x) -> 1
 - Bob: 1 z -> x (grab) -> C

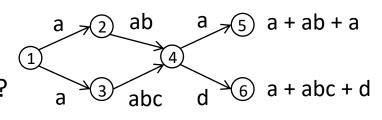





J - Jumbled Stacks (4/6)


Sort elements in stacks with different capacities.

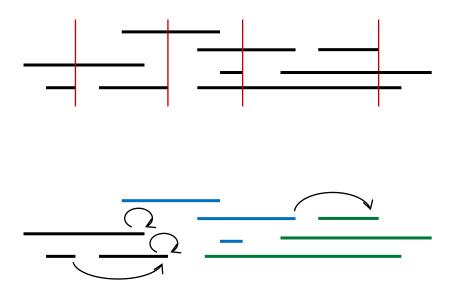

- you can empty any stack
- move the smallest number x into place
 - from source to target stack
- need a "stage" stack
 - top reserved for x
- clear source stack above x
- clear target stack (avoid source)
 - use top of stage for x to free source stack
- move x into target place
- careful: need at least 3 stacks
 - leave top elements for last



L - Labelled Paths (0/6)

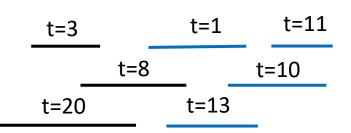
Find lexicog. smallest paths from a single source in a DAG.

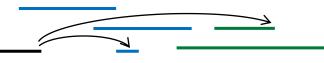
- "Dijkstra" doesn't work
 - track smallest paths of different lengths?
- go backwards from every node
 - reverse topological order, n⋅m operations
- path = sequence of n substring of superstring A
 - compare: merge with O(n) comparisons of two substrings of A
 - O(n) equality checks and just one comparison!


- substring comparison?
 - poly. rolling hash + binary search for longest prefix, O(a + nm(n+log a)),
 - suffix array, O(a log a + nm(n+log a))

A – Attendance (0/1)

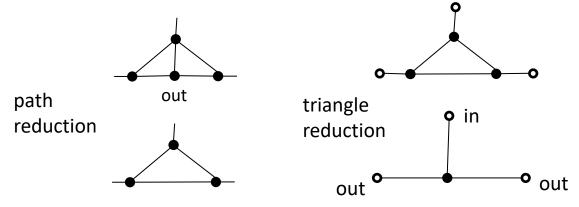
Solve a stabbing set problem on a dynamic set of intervals.

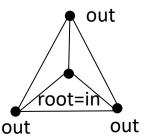

- fixed set of intervals: greedy
 - stab at the earliest end-point
 - sort by ends and solve in O(n)
- dynamic set of intervals
 - simulate the greedy process
 - blocks of size \sqrt{n} (by ends)
 - jump within a block
 - compute the end of the greedy process within a block for every start
 - jump between blocks
 - min end among those with sufficiently large start
 - $O(n\sqrt{n}\log n)$, TLE



A - Attendance

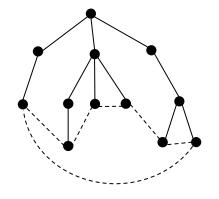
- exploit known coordinates
 - for every interval precompute the "next" (could be inactive) interval within each block
 - enable/disable intervals, update suffix min query data
 - $O(n\sqrt{n})$ time and space, MLE
- process queries (different times) "in parallel" from block to block
 - final interval for each "time"
 - sort intervals by starts within a block
 - compute next intervals for current block
 - recompute block on change
 - suffix min data, final positions within block
 - $O(n\sqrt{n})$ time, O(n) space



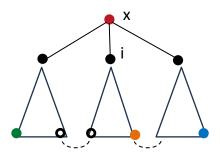

F – Phylogenetics (0/0)

Count colorings of a tree with leaves connected in a circle.

- compress nodes of degree 2 (inner)
- Halin graph
- decompose into a tree and a cycle
 - guess a tree root (node of degree 3 + neighbors)
 - try to compress the graph from leaves towards root
 - triangles exist only on the perimeter
 - linear time O(m), dealing with nodes of degree 3


final configuration K4

F - Phylogenetics


- construct a cycle from marked leaves
- reorder children consistently with the cycle

- count colorings with k colors
 - f(x, c, l, r) ... x=root, color(x)=c, color(left(x))=l, color(right(x))=r
 - combine subproblems: g(i, d) ... first i children end with right leaf of color d
 - choose colors of i, left(i), right(i-1)
- improve to O(n k⁴)
 - cumulative sums of subproblems
 - not even close to time limit :(
- exact colors don't matter, just their equivalence classes!

$$- f(x, 3, 5, 3) = f(x, 1, 2, 1)$$

O(n) ... O(n) states and O(1) transitions to consider

The End

