ICPC CERC 2023

Solution Presentation

University of Ljubljana
Faculty of Computer and Information Science

Ljubljana, 10. 12. 2023

E - Equal Schedules ${ }_{(59 / 60)}$

Find differences between two schedules.

07 jan	09 tomaz	jure -1
714 tomaz	920 jan	tomaz +1
1420 jure	2026 jure	
2024 jan		
2425 tomaz		
2526 jure		

- at most 1000 items
- do what the task says ... in any way
- map/dictionary

B - Ball Passing ${ }_{(46 / 48)}$

Pair students arranged in a convex polygon to maximize the sum of distances between paired students.

- solve boys and girls separately
- switching non-crossing pairs increases total distance
- unique configuration without non-crossing pairs
- connect person X with person $\mathrm{X}+\mathrm{N} / 2$

H - Human Resources

Efficiently encode and decode a hierarchical structure.

Janez: Josip Zofia
Janez
Zofia: Karolina
Josip
Zofia
Karolina
(() (()))

- structure:
- parent of each node? ... $n \log (n)$ bits
- parentheses encoding of a tree ... $2 n$ bits
- content:
- DFS order of employee names
- preserves preference order of subordinates

G - Going to the Moon

Shortest path from A to B while touching disk $D=(C, r)$.

- A or B within D-> straight line
- segment $A B$ crosses/touches D-> straight line
- $C^{\prime}=$ projection of C onto line $A B$

- C^{\prime} on $A B$ and $\operatorname{dist}\left(C^{\prime}, C\right) \leq r$
- ellipse with focal points A and B
- search between CA and CB
- or along AB
- ternary search, unimodal
- property: normal at $\mathrm{P}(\mathrm{CP})$ bisects $\angle \mathrm{APB}$
- alternatively:
- sample uniformly around the circle
- narrow down to the most promising section (and neighbors)

I - Interactive Reconstruction

Reconstruct tree structure using sums of neighbors.

- find leaves, determine their parents, cut them off, repeat
- leaves: query 111... 1
- parents: query with non-binary values 0 .. $\mathrm{n}-1$?
- make $\log (n)$ binary queries

01234567

- too many iterations?
- adjust answers to previous queries!
- O(n $\log \mathrm{n})$
- $1+\left\lceil\log _{2} n\right\rceil$ queries

C - Cakes

Decide which cakes to bake to maximize the profit = selling price - production costs (ingredients and tools).

- tools can be reused, subtract ingredients
- model with minimum cut
- weight = loss of profit
- cake edge = not selling that cake
- tool edge = buying that tool
- mincut $=$ min loss with no source - sink path

- path = selling a cake without buying a required tool
- large weights ... Ford-Fulkerson is too slow
- capacity scaling, Edmonds-Karp, Dinitz, ...

D - Drying Laundry

Dry the sheets on two lines of equal length by hanging them over 1 or 2 lines ($s=s l o w ~ t i m e, ~ f=f a s t ~ t i m e) . ~$.

- binary search (drying time t)?
- use a single line if possible ($s \leq t$), otherwise hang over two
- DP r(n,d) ... can you reach length d on line 1 with the first n single sheets

$$
t=10
$$

- sort sheets increasingly by their slow drying times
- increasing t... can afford to hang more sheets on the two individual lines
- possible? fill one line to capacity ... $\max (d: d \leq L / 2$ and $r(n, d)=$ true)
- answer ${ }_{t}=\max ($ slow time $=t$, max of fast times for double sheets)
- $r\left(n,{ }^{*}\right)=$ OR of two subarrays of $r\left(n-1,{ }^{*}\right)$... bitsets!

K - Keys

Arrange an exchange of keys between two residents.

- node 1 (outdoors) not part of any cycle -> no solution
- find such cycle: DFS tree + back-edge $(z, 1)$
- location of node 0 (bedroom)
A. in a different subtree
- Alice: A -> $1-z(d r o p ~ A->1)-1$
- Bob: 1 -> z (grab) -> 1 -> A
B. on the cycle
- Alice: B -> 1
- Bob: $1-\mathrm{z}->\mathrm{B}$
C. off the cycle

- Alice: $\mathrm{C}->\mathrm{x}($ drop $\mathrm{C}->\mathrm{x})->1$
- Bob: $1-\mathrm{z}->\mathrm{x}(\mathrm{grab})->\mathrm{C}$

J - Jumbled Stacks

Sort elements in stacks with different capacities.

- you can empty any stack
- move the smallest number x into place
- from source to target stack

- need a "stage" stack
- top reserved for x
- clear source stack above x
- clear target stack (avoid source)

- use top of stage for x to free source stack
- move x into target place
- careful: need at least 3 stacks
- leave top elements for last

	4	2	3
1	5	7	6

L - Labelled Paths
 (0/6)

Find lexicog. smallest paths from a single source in a DAG.

- "Dijkstra" doesn’t work
- track smallest paths of different lengths?

- go backwards from every node
- reverse topological order, n•m operations
- path = sequence of n substring of superstring A
- compare: merge with $O(n)$ comparisons of two substrings of A
- O(n) equality checks and just one comparison!
- substring comparison?

A	A	B	C	A	B	B	A	C	A
A	A	B	C	A	B	B	B	A	A

- poly. rolling hash + binary search for longest prefix, $O(a+n m(n+\log a))$
- suffix array, O(a log a + nm(n+log a))

A - Attendance

Solve a stabbing set problem on a dynamic set of intervals.

- fixed set of intervals: greedy
- stab at the earliest end-point
- sort by ends and solve in O(n)

- dynamic set of intervals
- simulate the greedy process
- blocks of size \sqrt{n} (by ends)
- jump within a block

- compute the end of the greedy process within a block for every start
- jump between blocks
- min end among those with sufficiently large start
$-O(n \sqrt{n} \log n)$, TLE
ํํ

A - Attendance

- exploit known coordinates
- for every interval precompute
 the "next" (could be inactive) interval within each block
- enable/disable intervals, update suffix min query data
- $O(n \sqrt{n})$ time and space, MLE
- process queries (different times) "in parallel" from block to block
- final interval for each "time"
- sort intervals by starts within a block
- compute next intervals for current block
- recompute block on change

- suffix min data, final positions within block
- $O(n \sqrt{n})$ time, $O(n)$ space

F - Phylogenetics ${ }_{(0 / 0)}$

Count colorings of a tree with leaves connected in a circle.

- compress nodes of degree 2 (inner)
- Halin graph
- decompose into a tree and a cycle
- guess a tree root (node of degree $3+$ neighbors)

- try to compress the graph from leaves towards root
- triangles exist only on the perimeter
- linear time $O(m)$, dealing with nodes of degree 3
path
reduction

final configuration K4

F - Phylogenetics

- construct a cycle from marked leaves
- reorder children consistently with the cycle
- count colorings with k colors

- $f(x, c, l, r) \ldots x=r o o t, \operatorname{color}(x)=c$, color(left(x))=l, color(right(x))=r
- combine subproblems: $g(i, d)$... first i children end with right leaf of color d
- choose colors of i, left((i), right($\mathrm{i}-1)$
- improve to $\mathrm{O}\left(\mathrm{nk}^{4}\right)$
- cumulative sums of subproblems
- not even close to time limit:(

- exact colors don't matter, just their equivalence classes!
$-f(x, 3,5,3)=f(x, 1,2,1)$
- $O(n) \ldots O(n)$ states and $O(1)$ transitions to consider

The End

icioc central europe

